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Abstract Electromagnetic fields are quantized in a manifestly covariant way by means of
a class of reducible “center-of-mass N -representations” of the algebra of canonical com-
mutation relations (CCR). The four-potential Aa(x) transforms in these representations as a
Hermitian four-vector field in Minkowski four-position space (without change of gauge), but
in momentum space it splits into spin-1 massless photons and two massless scalars. What
we call quantum optics is the spin-1 sector of the theory. The scalar fields have physical
status similar to that of dark matter (spin-1 and spin-0 particle numbers are separately con-
served). There are no negative-norm or zero-norm states. Unitary dynamics is given by the
point-form interaction picture, with minimal-coupling Hamiltonian constructed from fields
that are free on the null-cone boundary of the Milne universe. SL(2,C) transformations as
well as the dynamics are represented unitarily in the Hilbert space corresponding to N four-
dimensional oscillators. Vacuum is a Bose-Einstein condensate of the N -oscillator gas and
is given by any N -oscillator product state annihilated by all annihilation operators. The form
of Aa(x) is determined by an analogue of the twistor equation. The same equation guaran-
tees that the set of vacuum states is Poincaré invariant. The formalism is tested on quan-
tum fields produced by pointlike classical sources. Photon statistics is well defined even for
pointlike charges, with ultraviolet and infrared regularizations occurring automatically as a
consequence of the formalism. The probabilities are not Poissonian but of a Rényi type with
α = 1 − 1/N ; the Shannon limit N → ∞ is an ultraviolet/infrared-regularized Poisson dis-
tribution. The average number of photons occurring in Bremsstrahlung splits into two parts:
The one due to acceleration, and the one that remains nonvanishing even for inertially mov-
ing charges. Classical Maxwell electrodynamics is reconstructed from coherent-state aver-
aged solutions of Heisenberg equations. We show in particular that static pointlike charges
polarize vacuum and produce effective charge densities and fields whose form is sensitive
to both the choice of representation of CCR and the corresponding vacuum state.
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1 Introduction

What we present below is a manifestly covariant quantum theory of light with positive-
definite metric in a Hilbert space and Hermitian four-potential, where regularizations occur
automatically and do not have to be motivated by hand-waving arguments. We abandon the
“Zeroth Axiom” of quantum field theory stating that there is only one relativistically invari-
ant vacuum state, and show how to construct a theory where the vacuum is represented by a
relativistically invariant Hilbert subspace of states annihilated by all annihilation operators.

The dynamics is not given by Maxwell’s equations, but by the Heisenberg equation. The
formalism is gauge independent in the following sense: The requirement that the set of
states annihilated by all annihilation operators is SL(2,C) invariant almost uniquely (i.e. up
to a solution of a twistor-like equation) fixes the form of the four potential. All potentials
within this class produce the same physical results not only for the S-matrix, but also for
finite-time evolutions. The dynamics is unitary and well defined even for pointlike classical
sources, and reconstructs Maxwell electrodynamics at the level of coherent-state averages.
The time 0 ≤ τ that parametrizes the evolution is counted since the origin of the Universe.

We have tried to follow the philosophy of P.A.M. Dirac expressed in his talk given on 1
July 1982 at the Lindau gathering of Nobel laureates. Criticizing the general paradigm of
quantum field theory he said:

“I feel that we have to insist on the validity of this Heisenberg equation. This is the whole
basis of quantum theory. We have got to hold onto it whatever we do, and if the equation
gives results which are not correct it means that we are using the wrong Hamiltonian. This
is the point I want to emphasise (. . . ). Heisenberg originally formulated these equations
with the dynamical variables appearing as matrices. You can generalise this very much by
allowing more general kinds of quantities for your dynamical variables. They can be any
algebraic quantities such that you do not in general have commutative multiplication (. . . ).
Some day people will find the correct Hamiltonian and there will be some new degrees of
freedom, something which we cannot understand according to classical ideas, playing a role
in the foundations of quantum mechanics.” [1].

We insist on the Heisenberg equation and feel free to add certain degrees of freedom
that have no counterpart in classical electrodynamics. Our dynamical variables satisfy the
same Heisenberg algebra of canonical commutation relations (CCR) as in the usual quantum
field theory, but we work in a representation of CCR that is somewhat unusual. This rep-
resentation contains four types of additional degrees of freedom, as seen in the arguments
of the annihilation operator ab(R,k,N). The degrees of freedom can be given a physical
interpretation. b = 0,1,2,3 is a spacetime index, where 1 and 2 correspond to transverse
polarizations (massless field of spin 1). 0 and 3 turn out to correspond to two scalar mass-
less fields of dark matter type, unobservable in quantum optical experiments but otherwise
probably physical. The wave vector k is not understood as a set of three parameters but as
three eigenvalues of some operator. N is a relativistic invariant counting the number of os-
cillators that form the field—what is important, N is finite even if the number of different
frequencies of the field is infinite, so these are not the oscillators of Heisenberg, Born and
Jordan—one oscillator per mode—introduced in 1925 in order to quantize electromagnetic
fields [2]. Ra = (R0,R) is a timelike world-vector representing, at least tentatively, location
of excitations of the oscillators.
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The first three sets of quantum numbers were introduced and discussed from various
perspectives in a series of papers [3–7], and we refer to these representations as the standard-
form reducible N -representations of CCR. The fact that the representations of CCR are
not irreducible agrees with Dirac’s intuition, expressed in his last paper [8], that reducible
representations of physical symmetries may be important for field quantization, although
our realization of reducibility is not exactly the one Dirac had in mind.

Let us now briefly explain why we claim an extra variable Ra is needed to make the pic-
ture complete. Let us consider a null vector ka that plays a role of a flag-pole for a spinor field
πA(k), ka = πA(k)π̄A′(k) [9]. πA(k) is given by its flag-pole up to a phase factor, which is
essentially where the U(1) gauge group resides (cf. [10]). Since the transformed spinor field
�πA(k) = � B

A πB(�−1k) also satisfies ka = �πA(k)�πA′(k), it follows that �πA(k) and
πA(k) differ at most by a phase factor: �πA(k) = e−i�(�,k)πA(k). This factor is nothing else
but the Wigner phase occurring in massless spin-1/2 unitary representations of the Poincaré
group [11, 12]. Now, the four-potential operator Aa(x) transforms as a four-vector field, si-
multaneously guaranteeing correct relativistic unitary transformations of momentum-space
annihilation operators, provided there exists another spinor field ωA(k), ωA(k)πA(k) = 1,
transforming by

� B
A ωB(�−1k) = e+i�(�,k)ωA(k). (1)

The two null complex vectors, ma(k) = ωA(k)π̄A′(k) and its complex conjugate, define cir-
cular polarization basis. Equation of the form (1) is fundamental for our formalism, but the
problem is that we were not able to find its solution. However, what we managed to do was
to find a spin-frame field satisfying

� B
A ωB(�−1R,�−1k) = e+i�(�,k)ωA(R, k), (2)

� B
A πB(�−1R,�−1k) = e−i�(�,k)πA(R, k), (3)

ka = πA(R, k)π̄A′(R, k), ωA(R, k)πA(R, k) = 1, (4)

and that led us to the generalization ab(R,k,N) that we termed the “center-of-mass”
(COM) reducible N -representation of CCR. We shall later see that (2) is in many respects
similar to the twistor equation [13]. Defining circular polarization vectors by ma(R, k) =
ωA(R, k)π̄A′(R, k) we obtain a simple and elegant formulation of quantum electromagnetic
fields.

It remains to test the theory on some meaningful examples. It seems that at this stage an
optimal strategy is to discuss exactly solvable models that are known to be infrared-divergent
in the usual approaches to field quantization. Following this philosophy, the standard-form
N -representations were used in [6] to describe in Heisenberg picture the problem of quan-
tum fields produced by classical pointlike sources. The results were promising but there
were some problems with manifest covariance of such a theory, mainly due to the fact that
Heisenberg’s picture was formulated as an instant-form dynamics [14]. In the present paper
we replace the instant-form Heisenberg picture by a point-form interaction picture. We treat
the fields as being defined not on the entire Minkowski space, but on the Milne universe [15].
Fields are free on the boundary xax

a = 0 of the Milne universe.
We begin, in Sect. 2, with the fundamental dynamical equation for the evolution oper-

ator in interaction picture. The corresponding Hamiltonian is constructed from free fields
integrated with respect to a Lorentz invariant measure over a hyperboloid of constant proper
time τ = √

xaxa . In Sect. 3 we formally solve the Heisenberg equation of motion. We show
that although the Hamiltonian is defined for τ > 0, the solution is well defined even for
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τ0 = 0. The evolution operator is shown to be given by a coherent-state displacement oper-
ator. In Sect. 4 we restrict the analysis to irreducible representations. Taking as an example
the case of a pointlike static charge we obtain the Coulomb potential for τ > 0, but at τ = 0
the potential vanishes. Of course, charge is conserved so vanishing of the potential at the
boundary of the Milne universe is a consequence of the initial condition for the Heisenberg
dynamics. In Sects. 5–7 we introduce the standard form of reducible N -representation of
the four-potential, the corresponding Hilbert space, and the important notion of a vacuum
subspace, the set of states annihilated by all annihilation operators. In Sect. 8 we explic-
itly construct a representation of the Poincaré group in Minkowski space. Although four-
translations are not a symmetry group of the Milne universe, they play an important role
in definition of free fields at an arbitrary space-time point. This section culminates in the
formula for Lorentz transformations of momentum-space operators. It has a characteristic
upper-triangular form that mixes all the four spacetime indices of ab(k,N). In particular, the
transverse degrees of freedom get mixed with the timelike and longitudinal ones. Section 9
contains the central result of the present paper: Mixing disappears in COM representations,
i.e. if one replaces ab(k,N) by ab(R,k,N). Now the four spacetime degrees of freedom
separate into the direct sum of three massless representations of the Poincaré group: Spin 1
(indices 1 and 2), spin 0 (index 3), and spin 0 (index 0). This result would be true even
for COM irreducible representations, but we restrict the analysis to the reducible case. Sec-
tion 10 shows that the theory reconstructs classical electrodynamics if one defines classical
fields by coherent-state averages of Heisenberg-picture operators. We again concentrate on a
single pointlike charge moving with constant velocity, and in Sect. 11 we explicitly analyze
the resulting potential if the charge is at rest and the vacuum state is spherically symmetric.
The reducible representation predicts a potential whose form depends on the choice of a
vacuum state. Vacuum is in this representation indeed polarized and screens the pointlike
charge by a cloud of effective charge density. The resulting potential depends on the behav-
ior of the vacuum wave-function at infinity and origin (in momentum space). We insist that
the wave-function should vanish not only at infinity but also at the origin, since the latter
Lorentz invariant boundary condition is needed to regularize infrared divergences in photon
statistics. In this case we predict that the effective potential of a pointlike charge decays to
zero faster than the Coulomb solution. The photon statistics, discussed in Sect. 12, is the
first prediction where the quantum number N becomes visible: For finite N the resulting
probabilities are not Poissonian but of a Rényi type, with α = 1 − 1/N . The Shannon limit
α → 1 simultaneously reconstructs the Poisson statistics and turns the theory into a regular-
ized form of the one known from irreducible representations. In Sect. 14 we again consider
the special case of a pointlike charge. We reconstruct the usual average number of pho-
tons typical of Bremsstrahlung but here in an automatically regularized form. We can also
split the number of photons into the part typical of acceleration of the charge, and the one
corresponding to the inertial part of the trajectory. Both quantities are mathematically well
defined. In Sect. 14 we discuss in detail which quantities are in our formulation relativisti-
cally invariant, and which are covariant. Section 15 collects the most essential physical and
mathematical differences between what we do and standard quantum field theory. We close
the paper by several technical Appendices.

2 Instant-Form and Point-Form Dynamics

Let X(0,x) be some field at x0 = 0. Denote by X(x0,x) = X(x) = U0(x0)
†X(0,x)U0(x0)

the (instant-form) Heisenberg dynamics of free fields whose Hamiltonian is H0. If the full
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Hamiltonian is H = H0 + H1 and U(x0, y0) = exp(−iH(x0 − y0)) is the full evolution
operator, the Heisenberg instant-form dynamics can be written in two equivalent ways

XH(x) = U(x0,0)†X(0,x)U(x0,0) = U(x0, y0)
†XH(y0,x)U(x0, y0) (5)

and

XH(x) = U(x0,0)†X(0,x)U(x0,0) = U1(x0)
†X(x)U1(x0) (6)

where U1(x0) is the solution of the interaction-picture Schrödinger equation

i∂0U1(x0) = H1(x0)U1(x0), U1(0) = I, (7)

H1(x0) = U0(x0)H1U0(x0)
†. (8)

The interaction Hamiltonian H1(x0) is constructed by integrating interaction Hamiltonian
density, constructed from free-field operators, over the hyperplane 	x = {x;x0 = const}.
The point x at both sides of (6) belongs to 	x . If 	x is an arbitrary space-like hyperplane
containing x and belonging to some foliation of a space-time region of interest, one gener-
alizes (6) as follows (Tomonaga–Schwinger formulation)

XH (x) = U1(	x)
†X(x)U1(	x) (9)

i∂	x U1(	x) = H1(	x)U1(	x), U1(	0) = I, (10)

where H1(	x) is obtained by integrating over 	x the Hamiltonian density constructed from
free-field operators evaluated on 	x , and ∂	x denotes a derivative with respect to a parameter
that labels the hyperplane 	x in a given foliation (for example x0).

In the Milnean context we employ 	x = {x; x2 = τ 2 ≥ 0, x0 ≥ 0} =: 	τ , ∂	x = d/dτ .
The Milne universe is the subset M = ⋃

τ≥0 	τ of the Minkowski space; 	τ are regarded
as sets of simultaneous events (i.e. the 3D “space” at “time” τ ). The Hamiltonian describing
interaction of a classical current with quantized electromagnetic fields reads

H1(	τ ) =
∫

dx̃τ Ja(xτ )A
a(xτ ) =: H1(τ ) (11)

where dx̃τ = d3x/
√

1 + x2/τ 2 is the Lorentz invariant measure on 	τ , and xτ =
(
√

τ 2 + x2,x). The measure is ill defined at τ = 0, but the formula d4x = dτdx̃τ will
nevertheless allow us to consider fields with free-field initial conditions on the light cone
τ = 0, the boundary of the Milne universe. Therefore, we will be able to write the point-form
Heisenberg picture dynamics as

XH (x) = U1(
√

x2)†X(x)U1(
√

x2), U1(
√

x2) := U1(
√

x2,0), x ∈ M, (12)

i
d

dτ
U1(τ, τ0) = H1(τ )U1(τ, τ0), U1(τ0, τ0) = I. (13)

In other words, although the Hamiltonian H1(τ ) is not well defined at τ = 0, the operator
U1(τ, τ0) satisfying (13) will be well defined even for τ0 = 0. We treat (12)–(13) as the
definition of the dynamical system.
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3 Formal Algebraic Solution

Consider the Lie C∗-algebra of CCR

[aa(κ), ab(κ
′)†] = δabδ(κ,κ ′)I (κ), (14)

[aa(κ), I (κ ′)] = [I (κ), aa(κ
′)†] = 0, (15)

I (κ)† = I (κ), where a, b = 0, 1, 2, 3, are Minkowski-space indices that can be raised
and lowered by means of gab = gab = diag(1,−1,−1,−1). δab is the Kronecker delta and
δ(κ,κ ′) is an appropriate Dirac delta distribution. We will consider two types of κ : κ = k,
where k is a wave vector and

δ(κ,κ ′) = δ0(k,k′) = (2π)32|k|δ(3)(k − k′) (16)

is the invariant measure on the light-cone, and κ = (R,k) where (R0,R) is a future-pointing
timelike vector, RaRa = 1. In the latter case

δ(κ,κ ′) = δ0(k,k′)δ1(R,R′) = (2π)64|k|
√

1 + R2δ(3)(k − k′)δ(3)(R − R′). (17)

We will discuss two definitions of the electromagnetic four-potential operator. Both involve
four polarization degrees of freedom (two transverse, one longitudinal, and one timelike),
and a set of continuous degrees of freedom. The first definition, later used in irreducible and
standard-form reducible N -representations of CCR, reads

Aa(x) = i

∫

dk̃
(
xa(k)a1(k) + ya(k)a2(k) + za(k)a3(k) + ta(k)a0(k)†

)
e−ik·x + H.c. (18)

= i

∫

dk̃
(
ga

1(k)a1(k) + ga
2(k)a2(k) + ga

3(k)a3(k)

+ ga
0(k)a0(k)†

)
e−ik·x + H.c. (19)

Here dk̃ = d3k(2π)−3(2|k|)−1 and xa(k) = ga1(k), . . ., ta(k) = ga0(k) is a field of
Minkowski tetrads [9]. Details of the notation and properties of the tetrads are explained
in the Appendix. The timelike four-vector ta(k) is accompanied by the creation operator.
This allows us to fulfill the covariant commutator

[Aa(x),Ab(y)] = igabD̂(x − y), (20)

D̂(x) = i

∫

dk̃I (k)
(
e−ik·x − eik·x), (21)

with gab being the Minkowski-space metric tensor of signature (+,−,−,−), but—as we
shall see later—we will not have to use an indefinite-metric formalism, and yet Aa(x) =
Aa(x)†. The hat in D̂ reminds us that the right-hand-side of (20) is not the usual Jordan-
Pauli function but a central element of the CCR algebra.

The second definition, important for “center-of-mass” reducible N -representations of
CCR, employs certain ambiguity of the number of continuous degrees of freedom. Indeed,
let dR̃ denote a Lorentz invariant measure over a set of parameters R. Then
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Aa(x) = i

∫

dk̃dR̃
(
ga

1(R,k)a1(R,k) + ga
2(R,k)a2(R,k)

+ ga
3(R,k)a3(R,k) + ga

0(R,k)a0(R,k)†
)
e−ik·x + H.c (22)

is a field operator with interesting gauge and covariance properties as we shall see in Sect. 9.
However, calculations involving (22) are in many respects completely analogous to those
with (19), so for the moment we restrict the analysis to (19).

Denoting D̂adv(x) = −θ(−x0)D̂(x) (θ is the step function) we find the solution of (13)

U1(τ, τ0) = exp

(

−i

∫ 	τ

	τ0

d4xJ a(x)Aa(x)

)

× exp

(

− i

2

∫ ∫ 	τ

	τ0

d4x1d
4x2J

a(x1)Ja(x2)D̂adv(x1 − x2)

)

(23)

which is well defined also for τ0 = 0. The free fields are related to the Heisenberg-picture
operators Aa(x, J ), x2 = τ 2, by

Aa(x, J ) = U1(
√

x2)†Aa(x)U1(
√

x2)

= Aa(x) +
∫ 	τ

	0

d4x ′D̂(x − x ′)Ja(x
′). (24)

At τ = 0 we find U1(0) = I and AH
a (x) = Aa(x).

Formula (24) shows that U1 is essentially a coherent-state displacement operator, whose
general definition in this context should be taken in the form

D(α) = exp
∫

dk̃
(
α1(k)a1(k) + α2(k)a2(k) + α3(k)a3(k) + α0(k)a0(k)† − H.c.

)
. (25)

Let us note that again the timelike component α0(k) is accompanied by the creation operator.
This ensures the correct Minkowskian signature of appropriate bilinear forms, for example,

D(α)D(β) = D(α + β) exp
1

2

∫

dk̃I (k)
(
αa(k)βa(k) − βa(k)αa(k)

)
. (26)

The displacement operator shifts the creation and annihilation operators, but leaves the cen-
tral elements unchanged:

D(α)†aj (k)D(α) = aj (k) + αj (k)I (k), j = 1,2,3, (27)

D(α)†a0(k)† D(α) = a0(k)† + α0(k)I (k), (28)

D(α)†I (k)D(α) = I (k). (29)

In effect the field operators get shifted by central elements,

D(α)†Aa(x)D(α) = Aa(x) + i

∫

dk̃I (k)ga
a(k)αa(k)e−ik·x + H.c.

= Aa(x) + Âa(α, x). (30)

In general the shift Âa(α, x) is not a classical field but an element of the center of the CCR
algebra.
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4 Fields Produced by Classical Currents: Irreducible Representations

In irreducible representations all central elements are proportional to an identity operator
I , i.e. I (k) = ZI , with some constant Z > 0. We assume there exists a vacuum state |0〉
annihilated by all aa(k). (The apparently more general form I (k) = Z(k)I , where Z(k) is a
function, would lead to inconsistencies with the Lorentz covariance of the theory; a kind of
Z and Z(k) = 〈0|I (k)|0〉 will however appear in the reducible N -representations, and this
is why we do not put here Z = 1 but keep it general.) The solutions are

U1(τ, τ0) = exp

(

−i

∫ 	τ

	τ0

d4xJ a(x)Aa(x)

)

,

× exp

(

− i

2

∫ ∫ 	τ

	τ0

d4x1d
4x2ZJa(x1)Ja(x2)Dadv(x1 − x2)

)

, (31)

Aa(x, J ) = Aa(x) + ZI

∫ 	τ

	0

d4x ′D(x − x ′)J a(x
′). (32)

Here D and Dadv are the ordinary classical expressions. Equation (31) means that for Z �= 1
the effective physically observable current (the one responsible for photon statistics) is not
J a(x) but J a

ren(x) = Z1/2Ja(x), and thus the appropriate physical fields are not Aa(x) and
Aa(x, J ), but rather Aa

ren(x) = Z−1/2Aa(x) and Aa ren(x, J ) = Z−1/2Aa(x, J ). Now consider
the coherent state |α〉 = D(α)|0〉. A classical field corresponding to Aa(x, J ) is the average

〈α|Aa ren(x, J )|α〉 = i

∫

dk̃gaa(k)αa
ren(k)e−ik·x + c.c.

+
∫ 	τ

	0

d4x ′D(x − x ′)J rena(x
′), (33)

where αa
ren(k) = Z1/2αa(k). The latter is easier to understand if one notices that aa(k)|α〉 =

Zαa(k)|α〉. In other words, for Z �= 1 the physical fields are aa
ren(k) = Z−1/2aa(k) satisfying

aa
ren(k)|α〉 = αa

ren(k)|α〉 and

[aa
ren(k), ab

ren(k
′)†] = δabδ0(k,k′)I. (34)

So effectively we are back to the representations with Z = 1. We could, of course, renor-
malize the representation from the very beginning by dividing both sides of CCR by Z. We
decided not to do so, however, since when it comes to the reducible N -representations the
procedure of identifying physical quantities is not that obvious. We will see that at the end
the correct formalism will effectively require renormalization equivalent to dividing both
sides of CCR by some finite, Lorentz invariant Z, but this Z will have a different meaning
and origin than the constant occurring in irreducible representations.

We know that for pointlike sources the operator U1(τ ) does not exist (in irreducible
representations!) due to infrared divergences. It is nevertheless interesting to check what are
the implications for (33) of the fact that one integrates from τ = 0 and not from τ = −∞. Let
the curve τ → Xa(τ) = (

√
τ 2 + X(τ )2,X(τ )) describe the trajectory of a pointlike charge

q . The current is

J a(x) = q

∫ ∞

−∞
ds

dXa(s)

ds
δ(4)(x − X(s)). (35)
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The current is conserved also in the Milnean framework as a trivial consequence of its con-
servation in Minkowski space. Now that we know how to deal with Z �= 1 we can renormal-
ize and set Z = 1, so that q = qren. Evaluating the space-like integral we obtain

Aa(x, J ) = Aa(x) + q

∫ √
x2

0
ds

dXa(s)

ds
D(x − X(s)). (36)

Let us now concentrate on the Coulomb field, i.e. Xa(s) = (s,0,0,0) and vacuum initial
condition. Then only 〈0|A0(x, J )|0〉 is nonvanishing. Performing standard computations and
taking into account the signs of the arguments,

x0 − τ + |x| =
√

τ 2 + x2 − τ + |x| ≥ 0,

x0 − τ − |x| =
√

τ 2 + x2 − (τ + |x|) ≤ 0, (37)

x0 ± |x| ≥ 0

we arrive at

〈0|A0(x, J )|0〉 = q

(2π)2|x|
∫ ∞

0
dk

(
sink(x0 − τ + |x|) + sink(|x| − x0 + τ)

k

− sink(x0 + |x|) − sink(x0 − |x|)
k

)

=
{

0 for τ = 0,
q

4π |x| for τ > 0.
(38)

We conclude that observations performed at the cosmic time τ > 0 are unable to tell the
difference between Coulomb fields corresponding to the Minkowski space and those typ-
ical of the Milne universe. The situation will change if one quantizes the field in an N -
representation.

5 Standard Form of Reducible N < ∞ Representations of CCR

What we call in this paper a standard form of N -representations of CCR was introduced
in the context of nonrelativistic quantum optics in [3]. Further elements of the construc-
tion (coherent states, Poincaré group) were discussed in [4], a fermionic (canonical anti-
commutation relations) were introduced in [5], and the representation which is essentially
the one we discuss in the present section was given in [6]. A preliminary comparison of
N -representations with experimental cavity QED can be found in [7].

One begins with four operators, a0, a1, a2, a3, satisfying commutation relations typical of
an irreducible representation of CCR: [aa, a

†
b] = δab1. Let |0〉 denote their common vacuum,

i.e. aa|0〉 = 0. Now take the kets |k〉 normalized with respect to the light-cone delta function

〈k|k′〉 = δ0(k,k′) = (2π)32|k|δ(3)(k − k′). (39)

What we call the N = 1 (or 1-oscillator) representation of CCR acts in the Hilbert space
H(1) spanned by kets of the form

|k, n0, n1, n2, n3〉 = |k〉 ⊗ (a
†
0)

n0(a
†
1)

n1(a
†
2)

n2(a
†
3)

n3

√
n0!n1!n2!n3!

|0〉.
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Physically, H(1) may be regarded as representing the space of states of a single four-
dimensional oscillator. The 1-oscillator representation is defined by

aa(k,1) = |k〉〈k| ⊗ aa. (40)

This representation is reducible since the commutator

[aa(k,1), ab(k
′,1)†] = δabδ0(k,k′)|k〉〈k| ⊗ 1 (41)

involves at the right-hand-side the operator-valued distribution I (k,1) = |k〉〈k| ⊗ 1 belong-
ing to the center of the algebra, [aa(k,1), I (k′,1)] = [I (k,1), aa(k

′,1)†] = 0, for all k, k′,
a. Operators I (k,1) form a resolution of unity

∫

dk̃I (k,1) =
∫

dk̃|k〉〈k| ⊗ 1 = I ⊗ 1 = I (1). (42)

Here I (1) is the identity operator in H(1).
For arbitrary N the representation is constructed as follows. Define

H(N) = H(1) ⊗ · · · ⊗ H(1)
︸ ︷︷ ︸

N

(43)

and let A be an arbitrary operator defined for N = 1. Let

A(n) = I (1) ⊗ · · · ⊗ I (1)
︸ ︷︷ ︸

n−1

⊗A ⊗ I (1) ⊗ · · · ⊗ I (1)
︸ ︷︷ ︸

N−n

. (44)

The N oscillator extension of aa(k,1) is defined by

aa(k,N) = 1√
N

N∑

n=1

aa(k,1)(n) (45)

and satisfies the reducible representation

[aa(k,N), ab(k
′,N)†] = δabδ0(k,k′)I (k,N) (46)

where

I (k,N) = 1

N

N∑

n=1

I (k,1)(n). (47)

As before we find the resolution of unity

∫

dk̃I (k,N) = I (N) (48)

where I (N) is the identity operator in H(N).
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6 Vacuum, Multiphoton, and Coherent States in Standard-Form N -Representations

Vacuum is in this representation any state annihilated by all annihilation operators. Such
a state is neither unique nor Poincaré invariant—we will later show, when we introduce
“center-of-mass” N -representations, how to construct a representation of the Poincaré group
in a way that ensures invariance of the entire subspace of vacuum states. The set of vacuum
states is spanned by vectors of the form

|k1,0,0,0,0〉 ⊗ · · · ⊗ |kN,0,0,0,0〉. (49)

Now let |0,1〉 = ∫
dk̃O(k)|k,0,0,0,0〉, ∫ dk̃|O(k)|2 = 1, be a vacuum state for N = 1. For

arbitrary N a vacuum is defined as

|0,N〉 = |0,1〉 ⊗ · · · ⊗ |0,1〉
︸ ︷︷ ︸

N

. (50)

Acting on a vacuum with the N -representation of the displacement operator

D(α,N) = exp
∫

dk̃
(
α1(k)a1(k,N) + α2(k)a2(k,N)

+ α3(k)a3(k,N) + α0(k)a0(k,N)† − H.c.
)

(51)

we obtain a coherent state

|α,N〉 = D(α,N)|0,N〉. (52)

A linear combination of vectors of the form

|k1, . . . ,kN,n
(1)

0 , n
(1)

1 , n
(1)

2 , n
(1)

3 , . . . , n
(N)

1 , n
(N)

2 , n
(N)

3 〉
= |k1, n

(1)

0 , n
(1)

1 , n
(1)

2 , n
(1)

3 〉 ⊗ · · · ⊗ |kN,n
(N)

0 , n
(N)

1 , n
(N)

2 , n
(N)

3 〉 (53)

is regarded as a state of n3 = ∑N

j=1 n
(j)

3 longitudinal and n0 = ∑N

j=1 n
(j)

0 timelike “photons”;

n1 = ∑N

j=1 n
(j)

1 and n2 = ∑N

j=1 n
(j)

2 describe the numbers of transverse photons. Timelike
and longitudinal “photons” are, by assumption, unobservable in quantum optical measure-
ments. Number of photons is therefore identified with the number of excitations in the N -
oscillator system. In particular, an nth power of a creation operator acting on a vacuum state
creates an n-photon state and coherent states have a Poisson statistics. We shall later discuss
these issues on the explicit example of the photon statistics of fields produced by classical
sources.

7 Standard-Form N < ∞ Representation of the Four-Potential Operator

The potential operator in this representation reads

Aa(x,N) = i

∫

dk̃
(
g 1

a (k)a1(k,N) + g 2
a (k)a2(k,N) + g 3

a (k)a3(k,N)

+ g 0
a (k)a0(k,N)†

)
e−ik·x + H.c. (54)
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Let us note that defining k̂a = ∫
dk̃ka|k〉〈k| we can write the N = 1 case as

Aa(x,1) = i
(
g 1

a (k̂)e−ik̂·x ⊗ a1 + g 2
a (k̂)e−ik̂·x ⊗ a2 + g 3

a (k̂)e−ik̂·x ⊗ a3

+ g 0
a (k̂)e−ik̂·x ⊗ a

†
0

) + H.c. (55)

where all the integrals have been absorbed into spectral decompositions of k̂a . The commu-
tator

[Aa(x,N),Ab(y,N)] = igabD̂(x − y,N) (56)

involves the operator analogue of the Jordan-Pauli function

D̂(x,N) = i

∫

dk̃I (k,N)
(
e−ik·x − eik·x). (57)

As before, the correct signature of the metric tensor in (56) comes from the Bogoliubov-type
structure of the positive-frequency part of Aa(x,N), i.e. the combination of annihilation and
creation operators. If one had replaced a

†
0 by a0 one would have been forced to depart either

from positivity of the scalar product or unitarity of evolution.

8 Representation of the Poincaré Group in Minkowski Background Space

We first construct a standard-form representation of an operator U(�,y,1) (i.e. N = 1)
acting by

U(�,y,1)†Aa(x,1)U(�,y,1) = �a
bAb

(
�−1(x − y),1

)
, (58)

and then extend it to arbitrary N by

U(�,y,N) = U(�,y,1) ⊗ · · · ⊗ U(�,y,1)
︸ ︷︷ ︸

N

, (59)

U(�,y,N)†Aa(x,N)U(�,y,N) = �a
bAb

(
�−1(x − y),N

)
. (60)

8.1 Four-Translations

The 4-momentum for N = 1 reads

Pa(1) =
∫

dk̃ka|k〉〈k| ⊗ (
a

†
1a1 + a

†
2a2 + a

†
3a3 − a

†
0a0

)
(61)

= −
∫

dk̃ka|k〉〈k| ⊗ a†
aa

a (62)

=
∫

dk̃ka

(
n̂1(k,1) + n̂2(k,1) + n̂3(k,1) − n̂0(k,1)

)
. (63)

The form (63) defines four number operators n̂a(k,1). One immediately verifies that

eiP (1)·xa1(k,1)e−iP (1)·x = a1(k,1)e−ix·k, (64)
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eiP (1)·xa2(k,1)e−iP (1)·x = a2(k,1)e−ix·k, (65)

eiP (1)·xa3(k,1)e−iP (1)·x = a3(k,1)e−ix·k, (66)

eiP (1)·xa0(k,1)†e−iP (1)·x = a0(k,1)†e−ix·k, (67)

implying

U(1, y,1)†Aa(x,1)U(1, y,1) = Aa(x − y,1). (68)

The 4-momentum for arbitrary N reads

Pa(N) =
N∑

n=1

Pa(1)(n) (69)

=
∫

dk̃ka

(
n̂1(k,N) + n̂2(k,N) + n̂3(k,N) − n̂0(k,N)

)
. (70)

The number operators, defined by (70), satisfy

n̂a(k,N) = ∑N

n=1n̂a(k,1)(n). (71)

We again find the correct formula

eiP (N)·xa1(k,N)e−iP (N)·x = a1(k,N)e−ix·k, (72)

eiP (N)·xa2(k,N)e−iP (N)·x = a2(k,N)e−ix·k, (73)

eiP (N)·xa3(k,N)e−iP (N)·x = a3(k,N)e−ix·k, (74)

eiP (N)·xa0(k,N)†e−iP (N)·x = a0(k,N)†e−ix·k, (75)

implying

U(1, y,N)†Aa(x,N)U(1, y,N) = Aa(x − y,N). (76)

The form (69) is characteristic of a 4-momentum of N non-interacting particles. These par-
ticles (four-dimensional oscillators) have no counterpart in classical electrodynamics.

Vectors (53) are simultaneously the eigenvectors of Pa(N),

P a(N)|k1, . . . ,kN,n
(1)

0 , . . . , n
(N)

3 〉
= (

ka
1

(
n

(1)

1 + n
(1)

2 + n
(1)

3 − n
(1)

0

) + · · · + ka
N

(
n

(N)

1 + n
(N)

2 + n
(N)

3 − n
(N)

0

))

× |k1, . . . ,kN,n
(1)

0 , . . . , n
(N)

3 〉. (77)

8.2 Boosts and Rotations

We begin with the generators

J1 = i(a
†
3a2 − a

†
2a3), (78)

J2 = i(a
†
1a3 − a

†
3a1), (79)

J3 = i(a
†
2a1 − a

†
1a2), (80)
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K1 = i(a
†
0a

†
1 − a0a1), (81)

K2 = i(a
†
0a

†
2 − a0a2), (82)

K3 = i(a
†
0a

†
3 − a0a3), (83)

[Ji, Jj ] = iεijkJk, (84)

[Ki,Kj ] = −iεijkJk, (85)

[Ji,Kj ] = iεijkKk, (86)

of SO(1,3). Of particular importance is the combination b = a3 − a
†
0 , [b, b†] = 0, occurring

in the generators of E(2)

L1 = J1 + K2 = i(b†a2 − a
†
2b), (87)

L2 = J2 − K1 = i(a
†
1b − b†a1), (88)

L3 = J3, (89)

[L3,L1] = iL2, (90)

[L2,L3] = iL1, (91)

[L1,L2] = 0. (92)

We prove in the Appendix that for N = 1 the representation is

U(�,0,1) =
∫

dk̃|k〉〈�−1k| ⊗ e−i|φ(�,k)| sin ξ(�,k)L1e−i|φ(�,k)| cos ξ(�,k)L2e−i2�(�,k)L3 . (93)

Here φ(�,k) = |φ(�,k)|eiξ(�,k) and �(�,k) are related to the spin-frame field (see Ap-
pendix) ωA(k), πA(k), ωA(k)πA(k) = 1, ka = πA(k)π̄A′

(k), by

ei�(�,k) = πA(k)�ωA(k), (94)

φ(�,k) = e−i�(�,k)ωA(k)�ωA(k), (95)

�πA(k) = � B
A πB(�−1k) = e−i�(�,k)πA(k), (96)

�ωA(k) = � B
A ωB(�−1k). (97)

�(�,k) is the Wigner phase, and φ(�,k) is a quantity of a gauge type that has no geometric
meaning (due to the ambiguity in the definition of ωA(k), see Appendix). Later, in “center-
of-mass” representations, we shall find φ = 0.

The required transformation rule

U(�,0,1)†Aa(x,1)U(�,0,1) = �a
bAb

(
�−1x,1

)
(98)

extends to arbitrary N by (59). The momentum-space transformations have a triangular form
if expressed in terms of the combinations a±(k,N) = (a1(k,N) ± ia2(k,N))/

√
2 (circular

polarizations) and b±(k,N) = (a3(k,N) ± a0(k,N)†)/
√

2,
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⎛

⎜
⎜
⎝

U(�,0,N)†b+(k,N)U(�,0,N)

U(�,0,N)†a+(k,N)U(�,0,N)

U(�,0,N)†a−(k,N)U(�,0,N)

U(�,0,N)†b−(k,N)U(�,0,N)

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

1 −φ(�,k)e2i�(�,k) −φ̄(�,k)e−2i�(�,k) −|φ(�,k)|2
0 e2i�(�,k) 0 φ̄(�,k)

0 0 e−2i�(�,k) φ(�,k)

0 0 0 1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

b+(�−1k,N)

a+(�−1k,N)

a−(�−1k,N)

b−(�−1k,N)

⎞

⎟
⎟
⎠ .

(99)

Comparing (99) with (73)–(75) from [6] we see that the former reduce to the latter if φ = 0, a
consequence of the fact that (73)–(75) from [6] change gauge, which has yet to be corrected
by (40) in [6]. Our present formalism takes care of this gauge correction, but in conse-
quence the momentum-space circular-polarization annihilation operators do not transform
as irreducible spin-1 zero-mass representations of the Poincaré group. In the next section we
discuss a remedy to this difficulty.

9 “Center-of-Mass” N -Representations of CCR

In non-relativistic quantum mechanics the algebra [ak, a
†
l ] = δkl , occurring for a har-

monic three-dimensional oscillator, corresponds to the relative coordinate r = x1 − x2.
Our harmonic oscillators are characterized by quantum numbers that index the basis:
|k, n0, n1, n2, n3〉. The four numbers na describe excitations of some four-dimensional “rel-
ative coordinate”, analogous to r . The quantum numbers k replace the parameter ω charac-
terizing the non-relativistic potential mω2r2/2. Now, we know that physical oscillators are
characterized also by the center-of-mass coordinate R. Can and should we introduce such a
type of additional degree of freedom in our reducible representations of CCR?

It turns out that there is one place in the formalism where the presence of a timelike and
independent of k world-vector Ra would be of some help. In order to understand it let us
return to the function φ(�,k) we have encountered in the previous section. The formalism
would be much more elegant if we could automatically guarantee φ(�,k) = 0. This is
equivalent to

�ωA(k) = � B
A ωB(�−1k) = ei�(�,k)ωA(k). (100)

The problem is that we have not managed to find a spin-frame with this property. However,
the spin-frame, with k-independent νA and Ra ,

πA(R,k) = kAA′
ν̄A′

√
kBB ′

νBν̄B ′
= πA(k), (101)

ωA(R,k) = −RAA′
π̄A′(k)

Raka

, (102)

satisfies all the requirements we have imposed on the spin-frames so far, plus

�ωA(R,k) = � B
A ωB(�−1R,�−1k) = ei�(�,k)ωA(R,k). (103)
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As usual, by �−1R we denote a spacelike component of �−1
a
bRb. Ra can be in princi-

ple timelike, null, or spacelike, but only for a timelike Ra the denominator in (102) is
never vanishing. The zero-homogeneity ωA(λR,k) = ωA(R,k) implies that one can assume
RaRa = 1. So take the kets |R〉 normalized with respect to the delta function,

〈R|R′〉 = δ1(R,R′) = (2π)32
√

1 + R2δ(3)(R − R′). (104)

The N = 1 “center-of-mass” (COM) representation of CCR acts in the Hilbert space H(1)

spanned by kets of the form

|R,k, n0, n1, n2, n3〉 = |R,k〉 ⊗ (a
†
0)

n0(a
†
1)

n1(a
†
2)

n2(a
†
3)

n3

√
n0!n1!n2!n3! |0〉,

|R,k〉 = |R〉 ⊗ |k〉. The 1-oscillator COM representation is defined by

aa(R,k,1) = |R,k〉〈R,k| ⊗ aa, (105)

[aa(R,k,1), ab(R
′,k′,1)†] = δabδ(R,k,R′,k′)I (R,k,1), (106)

δ(R,k,R′,k′) = δ1(R,R′)δ0(k,k′), (107)

I (R,k,1) = |R,k〉〈R,k| ⊗ 1. (108)

Operators I (R,k,1) form a resolution of unity
∫

dk̃dR̃I (R,k,1) = I ⊗ I ⊗ 1 = I (1), (109)

where dR̃ is the invariant measure on the hyperboloid RaRa = 1. The two identity operators
I in (109) act in different Hilbert spaces but to simplify notation we denote them by the
same symbol. For arbitrary N we proceed as before

H(N) = H(1) ⊗ · · · ⊗ H(1)
︸ ︷︷ ︸

N

. (110)

The N oscillator extension of aa(R,k,1) is defined by

aa(R,k,N) = 1√
N

N∑

n=1

aa(R,k,1)(n) (111)

and satisfies the reducible representation

[aa(R,k,N), ab(R
′,k′,N)†] = δabδ(R,k,R′,k′)I (R,k,N), (112)

I (R,k,N) = 1

N

N∑

n=1

I (R,k,1)(n). (113)

As before we find the resolution of unity
∫

dk̃dR̃I (R,k,N) = I (N) where I (N) is the
identity operator in H(N). The potential operator in the new representation is defined in
exact analogy to our previous definitions,

Aa(x,N) = i

∫

dk̃dR̃
(
g 1

a (R,k)a1(R,k,N)

+ · · · + g 0
a (R,k)a0(R,k,N)†

)
e−ik·x + H.c. (114)



Int J Theor Phys (2009) 48: 2511–2549 2527

The Minkowski tetrad ga
a(R,k) is linked to the spin frame by (196). The analogue of the

Jordan-Pauli function is

D̂(x,1) = i

∫

dk̃dR̃I (R,k,1)
(
e−ik·x − eik·x) = I ⊗ i

∫

dk̃I (k,1)
(
e−ik·x − eik·x), (115)

D̂(x,N) = i

∫

dk̃dR̃I (R,k,N)
(
e−ik·x − eik·x) = 1

N

N∑

n=1

D̂(x,1)(n). (116)

The 4-momentum for N = 1 reads

Pa(1) = −I ⊗
∫

dk̃ka|k〉〈k| ⊗ a†
aa

a (117)

=
∫

dk̃ka

(
n̂1(k,1) + n̂2(k,1) + n̂3(k,1) − n̂0(k,1)

)
, (118)

and for arbitrary N we employ the extension (69),

Pa(N) = ∫
dk̃ka

(
n̂1(k,N) + n̂2(k,N) + n̂3(k,N) − n̂0(k,N)

)
. (119)

Hence

eiP (N)·xa1(R,k,N)e−iP (N)·x = a1(R,k,N)e−ix·k, (120)

eiP (N)·xa2(R,k,N)e−iP (N)·x = a2(R,k,N)e−ix·k, (121)

eiP (N)·xa3(R,k,N)e−iP (N)·x = a3(R,k,N)e−ix·k, (122)

eiP (N)·xa0(R,k,N)†e−iP (N)·x = a0(R,k,N)†e−ix·k, (123)

and

U(1, y,N)†Aa(x,N)U(1, y,N) = Aa(x − y,N). (124)

Boosts and rotations are represented by means of the operator

U(�,0,1) =
∫

dk̃dR̃|R,k〉〈�−1R,�−1k| ⊗ e−2i�(�,k)L3 . (125)

The operator

L3 = J3 = i(a
†
2a1 − a

†
1a2) = −(a†

+a+ − a†
−a−) (126)

is normally ordered. This should be contrasted with the standard-form operator (93) that
includes L1, L2, which do not annihilate vacuum states. The required transformation rule

U(�,0,1)†Aa(x,1)U(�,0,1) = �a
bAb

(
�−1x,1

)
(127)

extends to arbitrary N by (59). Finally, in momentum space we find
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⎛

⎜
⎜
⎝

U(�,0,N)†b+(R,k,N)U(�,0,N)

U(�,0,N)†a+(R,k,N)U(�,0,N)

U(�,0,N)†a−(R,k,N)U(�,0,N)

U(�,0,N)†b−(R,k,N)U(�,0,N)

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

1 0 0 0
0 e2i�(�,k) 0 0
0 0 e−2i�(�,k) 0
0 0 0 1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

b+(�−1R,�−1k,N)

a+(�−1R,�−1k,N)

a−(�−1R,�−1k,N)

b−(�−1R,�−1k,N)

⎞

⎟
⎟
⎠ . (128)

The field Aa(x,N) is a direct sum of zero-mass representations: The two spin-1 unitary
representations corresponding to transverse photons, and two spin-0 unitary representations
corresponding to “longitudinal” and “timelike” “photons”. The latter two fields do not mix
with the usual photons, but there is no reason to regard them as unphysical particles. The
representation of CCR is reducible, but the representations of the Poincaré group are irre-
ducible.

Let us stress that now there exists the following Poincaré invariant splitting of the four-
momentum (119),

Pa(N) = Pa(N)EM + Pa(N)S, (129)

Pa(N)EM =
∫

dk̃ka

(
n̂1(k,N) + n̂2(k,N)

)
, (130)

Pa(N)S =
∫

dk̃ka

(
n̂3(k,N) − n̂0(k,N)

)
, (131)

into electromagnetic and scalar parts. This is possible only in COM representations.

10 Correspondence with Classical Electrodynamics: Fields Produced by Classical
Currents in COM N -Representations

In COM N -representations Lorentz transformations do not mix transverse and time-
like/longitudinal degrees of freedom, and thus one can separately consider two types of
displacement operators:

D12(α,N) = exp
∫

dk̃dR̃
(
α1(R,k)a1(R,k,N) + α2(R,k)a2(R,k,N) − H.c.

)

= D12(α/
√

N,1)⊗N, (132)

D03(α,N) = exp
∫

dk̃dR̃
(
α3(R,k)a3(R,k,N) + α0(R,k)a0(R,k,N)† − H.c.

)

= D03(α/
√

N,1)⊗N . (133)

A correspondence principle with classical electrodynamics is obtained by coherent-state av-
erages with α1(R,k) = α1(k), α2(R,k) = α2(k), α3(R,k) = 0, α0(R,k) = 0, and |0,N〉 =
|0,1〉⊗N ,

|0,1〉 =
∫

dk̃dR̃ O0(k)O1(R)|R,k,0,0,0,0〉, (134)
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∫

dk̃|O0(k)|2 =
∫

dR̃|O1(R)|2 = 1. (135)

Indeed, let |α,N〉 = D12(α,N)|0,1〉 be such a coherent state. The solution of the Heisenberg
equation for a pointlike charge is

Aa(x, J,N) = Aa(x,N) + q

∫ √
x2

0
ds

dXa(s)

ds
D̂(x − X(s),N) (136)

where q is the bare charge occurring in the interaction Hamiltonian. The coherent-state
average reads

〈α,N |Aa(x, J,N)|α,N〉

= 〈α,N |Aa(x,N)|α,N〉 + q

∫ √
x2

0
ds

dXa(s)

ds
〈α,N |D̂(x − X(s),N)|α,N〉 (137)

= 〈α,1|Aa(x,1)|α,1〉 + q

∫ √
x2

0
ds

dXa(s)

ds
〈0,1|D̂(x − X(s),1)|0,1〉. (138)

The equivalence between (137) and (138) follows from the assumed form of the vacuum
state and the fact that displacements operators commute with I (R,k,N). This correspon-
dence principle is thus insensitive to N . We will later see that there exists another cor-
respondence principle, mathematically expressed by the weak limit N → ∞, linking N -
representations with regularized forms of irreducible representations.

Let us first have a look at the free-field part. Employing (22), denoting Z0(k) = |O0(k)|2,
Z1(k) = |O1(k)|2, we find

〈α,1|Aa(x,1)|α,1〉 = i

∫

dk̃Z0(k)
(〈ga

1(k)〉α1(k) + 〈ga
2(k)〉α2(k)

)
e−ik·x + c.c.,

(139)
〈ga

j (k)〉 =
∫

dR̃ Z1(R)ga
j (R,k).

This is a classical four-potential with momentum-space amplitudes Z0(k)αj (k) and trans-
verse linear polarization vectors 〈ga

j (k)〉. Switching to the null tetrad we obtain

〈α,1|Aa(x,1)|α,1〉
= −i

∫

dk̃Z0(k)
(〈ωA(k)〉π̄A′(k)α+(k) + πA(k)〈ω̄A′(k)〉α−(k)

)
e−ik·x + c.c. (140)

Since

〈ωA(k)〉πA(k) =
∫

dR̃ Z1(R)ωA(R,k)πA(k) =
∫

dR̃ Z1(R) = 1 (141)

the pair 〈ωA(k)〉, πA(k) is again a spin-frame. Such a free-field potential satisfies the Lorenz
gauge

∂a〈α,1|Aa(x,1)|α,1〉 = ∂a〈α,N |Aa(x,N)|α,N〉 = 0. (142)

The corresponding free-field tensor
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Fab(x) = ∂a〈α,1|Ab(x,1)|α,1〉 − ∂b〈α,1|Aa(x,1)|α,1〉 (143)

= εAB

∫

dk̃Z0(k)π̄A′(k)π̄B ′(k)
(
α+(k)e−ik·x + α−(k)eik·x)

+ εA′B ′
∫

dk̃Z0(k)πA(k)πB(k)
(
α−(k)e−ik·x + α+(k)eik·x

)
(144)

has the standard form typical of electromagnetic free fields with momentum-space ampli-
tudes Z0(k)α±(k).

Now, let us turn to the source term in (138) and assume, similarly to Sect. 4, that Xa(s) =
uas, where ua is a constant four-velocity. The solution of the Heisenberg equation then reads
explicitly

Aa(x, J,N) = Aa(x,N)

+ 2qua

∫

dk̃ dR̃ I (R,k,N)
cos[k · (x − u

√
x2)] − cos[k · x]

k · u . (145)

The source term, when averaged in |α,N〉, reduces to

2qua

∫

dk̃ Z0(k)
cos[k · (x − u

√
x2)] − cos[k · x]

k · u . (146)

Let Z = maxk{Z0(k)}. The form of U(�,y,N) for COM N -representations implies that
Z is Poincaré invariant since maxk{Z0(k)} = maxk{Z0(�

−1k)}. Denoting χ(k) = Z0(k)/Z,
qren = Z1/2q , Aa

ren(x) = Z−1/2Aa(x), Aa ren(x, J ) = Z−1/2Aa(x, J ), and α±ren(k) =
Z1/2α±(k), we get

〈α,N |Aa ren(x, J,N)|α,N〉
= −i

∫

dk̃χ(k)
(〈ωA(k)〉π̄A′(k)α+ren(k) + πA(k)〈ω̄A′(k)〉α−ren(k)

)
e−ik·x + c.c. (147)

+ 2qrenua

∫

dk̃ χ(k)
cos[k · (x − u

√
x2)] − cos[k · x]

k · u . (148)

Let us note that replacing χ(k) by 1 we obtain exactly the formula occurring for irreducible
representations with Z �= 1. However, since

∫
dk̃ Z0(k) = ∫

dk̃ |O0(k)|2 = 1 the function
0 ≤ χ(k) ≤ 1 must vanish for k → ∞. In consequence, the fact that O0(k) ∈ L2(dk̃) im-
plies that the theory gets automatically ultraviolet-regularized. An infrared regularization,
on the other hand, is equivalent to the Poincaré invariant boundary condition O0(0) = 0. The
invariant Z plays a role of the renormalization constant Z3.

Let us make here a remark that the average electromagnetic fields we have found by quan-
tizing in the COM N -representation do not differ from the formulas we would have found
if we had performed the computation in the standard-form N -representation. The differ-
ences are at the level of relativistic transformations of fields (in momentum representation),
and relativistic invariance of the vacuum subspaces of states (the latter holds only for COM
representations). The representation introduced in [4] (standard-form N -representations but
involving only the two transverse polarizations) led to the correct zero-mass spin-1 unitary
transformations of momentum-space transverse polarizations and invariance of the vacuum
subspace, but in position representation the four-potential was not a four-vector field. The
COM representations are free of all these difficulties, and yet are in many respects practi-
cally indistinguishable from the standard-form N -representations.
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11 Static Pointlike Charge in Spherically Symmetric Vacuum

Let us now consider the special case of the rest frame of a single bare charge q , i.e. the one
with (u0, u1, u2, u3) = (1,0,0,0), and the vacuum state |0,N〉 whose probability density in
the k-space is in this reference frame spherically symmetric. In order to simplify calculations
we assume that Z0(k) = 0 for |k| < k1 and |k| > k2, and Z0(k) = Z = const for k1 ≤ |k| ≤
k2, implying qren = Z1/2q = 2

√
2π√

k2
2−k2

1

q .

We are interested only in the source term, and this is unaffected by the choice
of α in |α,N〉, so let us take α = 0. Then the only non-vanishing component of
〈α,N |Aa ren(x, J,N)|α,N〉 is

〈0,N |A0 ren(
√

τ 2 + x2,x, J,N)|0,N〉
= qren

(2π)2|x|
(

sik2(x0 − τ + |x|) − sik1(x0 − τ + |x|)

+ sik2(|x| − x0 + τ) − sik1(|x| − x0 + τ) − sik2(x0 + |x|)
+ sik1(x0 + |x|) + sik2(x0 − |x|) − sik1(x0 − |x|)) (149)

for τ ≥ 0. The solution, as opposed to the irreducible case, is continuous in τ and has no
singularity at x = 0:

〈0,N |A0 ren(τ,0, J,N)|0,N〉 = qren

2π2

(

k2 − k1 + sink1τ

τ
− sink2τ

τ

)

. (150)

Employing

lim
τ→∞ sik(±

√
τ 2 + x2 ∓ τ + x) = sikx,

lim
τ→∞ sik(

√
τ 2 + x2 + x) = π/2

we get the asymptotic form

lim
τ→∞〈0,N |A0 ren(

√
τ 2 + x2,x, J,N)|0,N〉 = qren

2π2

sik2|x| − sik1|x|
|x| . (151)

If k1 = 0 then spacelike asymptotics is exactly Coulombian

qren

2π2

1

|x| sik2|x| → qren

2π2

1

|x|
π

2
= qren

4π |x| (152)

with |x| → ∞. If k1 �= 0, i.e. when Z0(0) = 0, the potential decays faster than 1/|x|. Figure 1
compares (151) with the Coulomb law for k2 = 104 (in arbitrary units) and various values of
k1. Deviations from the Coulomb law at large distances allow, at least in principle, to set an
upper bound on k1.

Let us stress it again that modifications of the Coulomb law are here a consequence of the
structure of the quantum vacuum in reducible N -representations, and not of modifications
of the current Ja(x) entering the Hamiltonian (11). The current in this example is the usual
classical, pointlike, static one. The photon field is also exactly massless.

So how is it possible that without modification of the current or introducing a photon
mass we have found a modification of the Coulomb field?
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Fig. 1 (Color online) The potentials as functions of r = |x|. The Coulomb field is red-dotted. Black
medium-dashed is the τ → ∞ limit of the potential following from the COM N -representation. The blue

short-dashed curve shows for comparison the part − qren
2π2

sik1r
r . Units are chosen arbitrarily and qren = 1

The answer is simple: We have not used the Maxwell equations at any stage but worked
exclusively with the Heisenberg picture. The link with Maxwell’s equations can be estab-
lished by first computing the average Maxwell field

Fab(x) = ∂a〈α,N |Ab ren(x, J,N)|α,N〉 − ∂b〈α,N |Aa ren(x, J,N)|α,N〉 (153)

and then defining the effective conserved current

Jb eff(x) = ∂aFab(x). (154)

We will not give here the explicit form of Jb eff(x) as the formula is not very illuminating.
But in the limit τ → ∞ the effective charge density takes a simple form,

ρeff(x) = qren
sin(k2|x|) − k2|x| cos(k2|x|)

2π2|x|3 − qren
sin(k1|x|) − k1|x| cos(k1|x|)

2π2|x|3 . (155)

Actually, this type of charge density is even too simple since the integral

Q =
∫

ρeff(x)d3x = qren lim
r→∞

2

π

(
sin(k1r) − sin(k2r) + si(k2r) − si(k1r)

)
(156)

is ill defined due to the oscillating first two terms. Replacing the discontinuities in Z0(k) by
continuous approximations to the step function, which is of course more realistic, we obtain
ρeff(x) that approximates (155) with arbitrary accuracy but the integral at the left-hand side
of (156) becomes well defined. We then find two cases: Either Z0(0) = 0 and Q = 0, or
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Fig. 2 (Color online) The effective charge density (black, long-dashed) is a sum of two terms that generate
total charges of opposite sign: One density (short-dashed, blue) that becomes the more uniform as a function
of r = |x| the smaller k1, and the other (dotted, red) that becomes the more localized the greater k2. The
long-dashed and dotted curves become practically indistinguishable even for a relatively large k1. However,
for k1 = 0 one of the two densities vanishes, and thus the total charge Q = qren is nonzero. Units on the plots
are chosen arbitrarily

Z0(0) > 0 and Q = qren. The same conclusion was found in [6] where the instant form
dynamics was used.

Now which case is more physical: Total charge Q = qren or Q = 0? We believe there are
many reasons to impose Z0(0) = 0 and, accordingly, Q = 0. First of all, waves of infinite
wavelength and zero frequency are unphysical. When we arrive at photon statistics it will
turn out that Z0(0) = 0 is needed to avoid infrared divergences. Moreover, the representa-
tions of the Poincaré group with ka = 0 have to be treated separately from those with k2 = 0,
ka �= 0 (are induced from different little groups and ka = 0 and ka �= 0 do not belong to the
same homogeneous space), and so on. So we have to understand Q = 0.

Plotting limτ→∞〈0,N |A0 ren(
√

τ 2 + x2,x, J,N)|0,N〉 and ρeff(x) for various values of
k1 and k2 we observe that the cases k1 = 0 and k1 ≈ 0 are locally practically indistinguish-
able. Figure 2 illustrates the modifications of ρeff(x) when we change k1. For k2 = 103 there
is no visible difference between k1 = 0 and k1 = 150, in spite of the fact that globally the
two charge distributions are different. Let us also note that the plots are made under the
assumption qren = 1, but the charge density involves both signs of charge.

12 Photon Statistics in COM N -Representations

The analysis given in the previous section shows that pointlike charges may generate effec-
tive classical fields that look like being produced by extended sources. What is interesting the
effect crucially depends on the choice of representation of CCR and its corresponding vac-
uum state, and thus is fundamentally quantum. But to relate the choice of N -representation
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with quantum optical experiments we need to discuss photon statistics. More precisely, we
are interested only in the statistics of transverse photons. The “longitudinal” and “timelike”
scalar particles are assumed to be undetectable in optical measurements.

To begin with, let us recall that an n-photon state is the one that contains n transverse-
polarization excitations distributed, in N -representations, over all the N oscillators. Such
states are spanned by vectors of the form (53) (appropriately modified in COM representa-
tions by the presence of R1 · · ·RN ). For N = 1 the probability of finding n

(1)
+ right-handed

and n
(1)
− left-handed excitations is given by an average of the projector

�(n
(1)
+ , n

(1)
− ) = I (1) ⊗ |n(1)

+ 〉〈n(1)
+ | ⊗ |n(1)

− 〉〈n(1)
− | ⊗ I

(1)

3 ⊗ I
(1)

0 (157)

where I (1) = ∫
dk̃dR̃|R,k〉〈R,k|. For arbitrary N the corresponding projector is

�(n+, n−) =
∑

n
(1)
+ ,...,n

(N)
−

�(n
(1)
+ , n

(1)
− ) ⊗ · · · ⊗ �(n

(N)
+ , n

(N)
− ) (158)

where we sum over all combinations of numbers of excitations that satisfy
∑N

j=1 n
(j)
± = n±.

An example of an n-photon state is a state that arises if one acts on a vacuum n times with
creation operators. So the situation is, in this respect, completely analogous to what we are
accustomed to from standard quantum field theories. However, it is very important to bear in
mind that in reducible representations the set of states containing n excitations is larger than
the set of states obtained by acting on vacuum with creation operators. To understand why
it is so it is enough to act on an n-photon state with any element of the center of the CCR
algebra. In irreducible representations all central elements are proportional to identities,
but in reducible cases these elements are nontrivial and yet do not change the number of
excitations.

The operator U1(τ ) = U1(τ,0) given by (23) can be written as

U1(τ ) = eiϕ(τ)V03(τ )V12(τ ) (159)

where ϕ(τ) is in the center of CCR, and Vab(τ ) are exponents containing only the polariza-
tions corresponding to the concrete choice of the indices a, b. The projector (158) commutes
with eiϕ(τ)V03(τ ). Let us denote by A⊥

a (x,N) the transverse part of Aa(x,N),

A⊥
a (x,N) = −i

∫

dk̃dR̃
(
ωA(R,k)π̄A′(k)a+(R,k,N)

+ πA(k)ω̄A′(R,k)a−(R,k,N)
)
e−ik·x + H.c. (160)

= −i

∫

dk̃dR̃
(
xa(R,k)a1(R,k,N) + ya(R,k)a2(R,k,N)

)
e−ik·x

+ H.c., (161)

V12(τ,N) = exp

(

−i

∫ 	τ

	τ0

d4xJ a(x)A⊥
a (x,N)

)

. (162)

If at τ = 0 the field is in a vacuum state then the probability of finding at an arbitrary τ n+
and n− photons of appropriate circular polarization type is

p(n+, n−, τ,N) = 〈0,N |V12(τ,N)†�(n+, n−)V12(τ,N)|0,N〉. (163)
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The fact that a
†
1a1 + a

†
2a2 = a

†
+a+ + a

†
−a− implies n1 + n2 = n+ + n−. Let us for sim-

plicity write explicitly only the formula for the total number of photons, p(n, τ,N) =∑
n++n−=n p(n+, n−, τ,N). Standard computations involving Baker-Hausdorff formula lead

to

p(n, τ,N) = 1

n!
dn

dλn
〈0,N | exp

(

λ

∫ 	τ

	τ0

d4xd4yJ a(x)J b(y)

∫

dk̃dR̃I (R,k,N)

× (
xa(R,k)xb(R,k) + ya(R,k)yb(R,k)

)
eik·(x−y)

)

|0,N〉
∣
∣
∣
∣
λ=−1

= 1

n!
dn

dλn
C(λ, τ,N)

∣
∣
∣
∣
λ=−1

where

C(λ, τ,N) =
(∫

dk̃dR̃Z0(k)Z1(R)

× e
λ
N

∫ 	τ
	τ0

d4xd4yJa(x)J b(y)
(
xa(R,k)xb(R,k)+ya(R,k)yb(R,k)

)
eik·(x−y)

)N

. (164)

The limiting case N → ∞

C(λ, τ,∞) = exp

(

λ

∫

dk̃dR̃Z0(k)Z1(R)

∫ 	τ

	τ0

d4xd4yJ a(x)J b(y)

× (
xa(R,k)xb(R,k) + ya(R,k)yb(R,k)

)
eik·(x−y)

)

(165)

implies the Poisson statistics. The case of finite N is, as noticed in [6], the Rényi α-statistics
with α = 1 − 1/N . The limit α → 1 is known in information theory as the Shannon limit.
Indeed, one recognizes in C(λ, τ,N) the Kolmogorov-Nagumo average [16] in the form
used by Rényi in his derivation of α-entropies [17]. The Shannon limit can be expressed
also directly in terms of the renormalized current J a

ren(x) = Z1/2J a(x) and χ(k) = Z0(k)/Z

(cf. Sect. 10). First of all, denoting

〈xa(k)xb(k)〉 + 〈ya(k)yb(k)〉
=

∫

dR̃ Z1(R)
(
xa(R,k)xb(R,k) + ya(R,k)yb(R,k)

)
, (166)

we get the limiting case

C(λ, τ,∞) = exp

(

λ

∫

dk̃χ(k)

∫ 	τ

	τ0

d4xd4yJ a
ren(x)J b

ren(y)eik·(x−y)

× (〈xa(k)xb(k)〉 + 〈ya(k)yb(k)〉)
)

(167)
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which is the regularized form of the expression we would have obtained for irreducible
representations. The regularization is here automatic and does not have to be justified by ad
hoc arguments on unobservability of “soft photons”, of course provided χ(0) = 0.

13 Photon Statistics for a Pointlike Source

Let us return to the pointlike current (35) and consider s → Xa(s) = uas where ua is a
constant four-velocity. Then

∫ 	τ

	τ0

d4xd4yJ a
ren(x)J b

ren(y)eik·(x−y)

= q2
ren

∫ τ

0
ds

dXa(s)

ds
eik·X(s)

∫ τ

0
ds ′ dXb(s ′)

ds ′ e−ik·X(s′) (168)

= q2
renu

aub sin2(k · uτ/2)

(k · u/2)2
. (169)

In particular, the N → ∞ vacuum-to-vacuum probability reads

C(−1, τ,∞) = exp

(

−q2
ren

∫

dk̃χ(k)
sin2(k · uτ/2)

(k · u/2)2
uaub

× (〈xa(k)xb(k)〉 + 〈ya(k)yb(k)〉)
)

. (170)

For τ > 0 this probability is smaller than 1, and thus a uniformly moving pointlike classical
charge emits photons. For large times, τ → ∞,

C(−1,∞,∞) = exp

(

− 2q2
ren

∫

dk̃χ(k)
〈[u · x(k)]2〉 + 〈[u · y(k)]2〉

(k · u)2

)

. (171)

Now consider the simplest case of an accelerated charge. The world-line

Xa(s) =
{

uas for 0 ≤ s < τ1,

uaτ1 + va(s − τ1) for τ1 ≤ s
(172)

describing the change ua → va of four-velocity at τ = τ1, implies for times τ > τ1

∫ τ

0
ds

dXa(s)

ds
eik·X(s) = eik·uτ1

(

ua 1 − e−ik·uτ1

ik · u − va 1 − eik·v(τ−τ1)

ik · v
)

. (173)

Restricting the analysis only to the Shannon limit N → ∞ we find

C(−1, τ,∞) = exp

(

−2q2
ren

∫

dk̃χ(k)
(〈xa(k)xb(k)〉 + 〈ya(k)yb(k)〉)

×
[

uaub

(k · u)2

(
1 − cos(k · uτ1)

) + vavb

(k · v)2

(
1 − cos

(
k · v(τ − τ1)

))
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− uavb

(k · u)(k · v)

(
1 − cos

(
k · uτ1

))(
1 − cos

(
k · v(τ − τ1)

))

+ uavb

(k · u)(k · v)
sin(k · uτ1) sin

(
k · v(τ − τ1)

)
])

. (174)

A comparison with standard quantum optics should take into account that τ and τ1 describe
the dynamics since the origin of the Universe. Thus �τ = τ − τ1 can be of the order of time
scales available in experiments, whereas τ1 is of the order of the age of the Universe. The
finite-time dynamics we encounter in present-day experiments is the limit τ1 → ∞ of (174),
with fixed �τ :

lim
τ1→∞C(−1, τ1 + �τ,∞)

= exp

(

−2q2
ren

∫

dk̃χ(k)
(〈xa(k)xb(k)〉 + 〈ya(k)yb(k)〉)

×
[

uaub

(k · u)2
+ vavb

(k · v)2

(
1 − cos(k · v�τ)

)

− uavb

(k · u)(k · v)

(
1 − cos(k · v�τ)

)
])

. (175)

The prediction corresponding to the S-matrix vacuum-to-vacuum probability is thus

lim
�τ→∞ lim

τ1→∞C(−1, τ1 + �τ,∞)

= exp

(

−2q2
ren

∫

dk̃χ(k)
(〈xa(k)xb(k)〉 + 〈ya(k)yb(k)〉)

×
[

uaub

(k · u)2
+ vavb

(k · v)2
− uavb

(k · u)(k · v)

])

. (176)

Replacing in (176) q2
ren by −λq2

ren we obtain a generating function of Poisson probability
distribution. The average number of photons associated with this Poisson distribution is

n̄(u, v) = q2
ren

∫

dk̃χ(k)
(〈xa(k)xb(k)〉 + 〈ya(k)yb(k)〉)

[
uaub

(k · u)2
+ vavb

(k · v)2

]

+ q2
ren

∫

dk̃χ(k)
(〈xa(k)xb(k)〉 + 〈ya(k)yb(k)〉)

[
ua

k · u − va

k · v
]

×
[

ub

k · u − vb

k · v
]

. (177)

Let us note that the second term is exactly the regularized and renormalized Bremsstrahlung
known from standard quantum radiation theory (cf. (1-211) in [18]). The first term contains
contributions to the average number of photons from the inertial parts of the trajectory. The
latter contribution is absent in more standard approaches and survives even if ua = va ; our
formulation allows to treat the Coulomb part of the potential in a fully quantum way, with
no need of separating it from radiation. Finally, the cut-off function χ(k) = |O0(k)|2/Z,
Z = maxk{|O0(k)|2}, appears here as a consequence of field quantization, does not have to
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be justified by ad hoc arguments, and should not be removed from the final result. We will
return to the cutoff problem in the final section.

We do not explicitly discuss the Rényi statistics occurring for finite N , but its derivation
is straightforward.

14 Covariance and Invariance of the Formalism

The Milne unverse itself is covariant under four-translations only in the restricted sense of
passive changes of coordinates in the background Minkowski space (i.e. one has to shift
also the origin xa = 0). The internal symmetry group of the Milne universe thus consists of
SL(2,C) transformations and the shifts τ → τ + �τ . The latter are given by the dynamics,
so we have to restrict the analysis to the SL(2,C) part.

The representation of the Poincaré group was constructed for free fields. These fields, in
the interaction picture, are the basic objects that define interaction at τ = τ0. If one analo-
gously constructs a fermionic representation UF (�,y,NF ) of the group [5], one arrives at a
quantum current satisfying

UF (�,y,NF )†Ja(x,NF )UF (�,y,NF ) = �a
bJb

(
�−1(x − y),NF

)
, (178)

where NF is independent of the bosonic parameter NB = N we employ in the present paper.
Therefore, the formalism we have introduced becomes internally consistent only if we as-
sume that the Poincaré transformation U(�,y,N) of electromagnetic fields is accompanied
by

Ja(x) → J ′
a(x) = �a

bJb

(
�−1(x − y)

)
, (179)

plus the required transformation of the region of integration in the source term. Assuming
this, let us investigate which quantities we have discussed are invariant, and which are only
covariant. We concentrate only on the SL(2,C) part.

14.1 Covariance of Aa(x, J,N) in COM N -Representations

In both standard-form and COM form of N -representations one finds

U(�,y,N)†D̂(x,N)U(�,y,N) = D̂(�−1x,N). (180)

Accordingly,

U(�,0,N)†Aa(x, J ′,N)U(�,0,N) = �a
bAb(�

−1x,J,N). (181)

14.2 Invariance of the Space of Vacuum States

Acting with (125) on (134) we find

U(�,0,1)|0,1〉 =
∫

dk̃dR̃ O0(�
−1k)O1(�

−1R)|R,k,0,0,0,0〉. (182)

A transformed vacuum state is again a vacuum state, but the probability of finding k is
modified by the Doppler effect. The extension to N > 1 is obvious. As a by product we
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observe that the vacuum wave function transforms as a scalar field

O0(k) → O0(�
−1k), (183)

O1(R) → O1(�
−1R), (184)

implying

Z0(k) → Z0(�
−1k), (185)

Z1(R) → Z1(�
−1R), (186)

and thus Z = maxk{Z0(k)} is SL(2,C) invariant, as stated in the preceding sections.

14.3 Invariance of H1

The interaction Hamiltonian

H1(τ ) =
∫

dx̃τ J
a(xτ )Aa(xτ ,N) = H1(τ, J,N) (187)

is invariant

U(�,0,N)†H1(τ, J
′,N)U(�,0,N) = H1(τ, J,N). (188)

Analogously, if U1(τ, τ0, J,N) is the evolution operator whose generator is given by
H1(τ, J,N), then

U(�,0,N)†U1(τ, τ0, J
′,N)U(�,0,N) = U1(τ, τ0, J,N). (189)

14.4 Covariance of Photon Statistics

Formulas (125) and (126) imply that the projector (158) commutes with U(�,y,N). There-
fore,

U1(τ, τ0, J
′,N)†�(n+, n−)U1(τ, τ0, J

′,N)

= U(�−1,0,N)†U1(τ, τ0, J,N)†�(n+, n−)U1(τ, τ0, J,N)U(�−1,0,N). (190)

The latter means that currents J a(x), J ′a(x), related by a Lorentz transformation, pro-
duce different photon statistics, but the differences reduce to different forms of Lorentz-
transformed vacuum probabilities: Z0(k), Z1(R), and Z0(�k), Z1(�R). In particular, if
J a(x) corresponds to a pointlike charge moving with four-velocity ua , and J ′a(x) describes
an analogous charge moving with u′

a = �a
bub , then vacuum-to-vacuum probabilities read,

respectively, (170) and

C ′(−1, τ,∞) = exp

(

−q2
ren

∫

dk̃χ(�k)
sin2(k · uτ/2)

(k · u/2)2

× uaub
(〈xa(k)xb(k)〉 + 〈ya(k)yb(k)〉)

)

. (191)
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15 Closing Remarks: Physical and Formal Structure of Quantization in
N -Representations

Quantum theory of light parametrized by N seems to violate many apparently sine qua non
standards imposed on present-day field theory, and yet the end result is the one we should
expect: As N increases the predictions converge to regularized versions of the standard
divergent formulas. The fact that the weak limit N → ∞ plays a role of a correspondence
principle with the standard regularized theory is not accidental and was analyzed in the
earlier papers [3–7]. So let us discuss in more detail also other important similarities and
differences with respect to the standard formalism.

15.1 Generator of Evolution versus Classical Noether Invariant

The Hamiltonian (11) is a quantized version of the interaction part of a classical Noether
invariant derived from the standard minimal-coupling Lagrangian density L(x). In classi-
cal theory one starts with the action

∫
O d4xL(x), where the integration region is contained

between two hyperboloids 	τ0 and 	τ . The action is invariant under (
√

τ 2 + x2,x) →
(
√

(τ + ε)2 + x2,x). Noether’s theorem then leads to the Hamiltonian whose interaction
part coincides with (11). It is important that our (11) is constructed from free fields evalu-
ated on 	τ . Let us stress that this is not exactly the standard interaction-picture since the
measure dx̃τ = d3x/

√
1 + x2/τ 2 depends on τ . This is why we state at the end of Sect. 3

that this is how we define the dynamical system. The denominator in dx̃τ shows that dif-
ferences between dx̃τ and d3x are negligible in present-day Earth-scale experiments (recall
that τ is of the order of the age of the Universe). The fact that (11) leads to the correct
form of electrodynamics suggests an extension of our field quantization paradigm to other
gauge theories in Minkowski space background: Take free fields in Minkowski space, define
potentials in terms of free fields, and couple with an appropriate current, also evaluated in
terms of free fields. This should be applicable, in particular, to the standard model and gauge
theories of gravitation.

15.2 Four-Potential, Gauge Freedom, and Indefinite-Metric Theories

The difference between our formalism and those with indefinite metric lies in the fact that the
positive-frequency part of free fields in momentum space contains both creation and annihi-
lation operators. Their number depends on the signature of spacetime. Since the Minkowski
space is 1 + 3 dimensional the corresponding part of the potential contains one creation
operator and three annihilation operators. In this way we obtain the potential which is Her-
mitian and thus the Hamiltonian generates a unitary dynamics. There are no negative norm
states. Due to our choice of circular polarization vectors the Lorentz transformations are
implemented in a unitary way, but the momentum space operators split into massless spin-1
and spin-0 representations. This does not contradict the fact that the position-space four-
potential transforms as a four-vector field. Lorentz transformations do not change the form
of the four-potential and thus do not change gauge. This form of “gauge” is a consequence
of the geometric condition (2)—the choice of explicit spin-frames satisfying (2) is the only
freedom left in our formalism. In this sense the four-potential is no longer an ordinary gauge
field, in spite of the fact that the Hamiltonian was obtained by quantization of a gauge field.

The additional two scalar massless fields satisfy all the standards we impose on physical
fields. We therefore predict that electrodynamics contains, in addition to the spin-1 massless
photons, two massless scalar fields. The energy of the field with the index 3 is nonnegative,
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whereas the field indexed by 0 has non-positive free-field energy. The assumption that op-
tical detectors react only to the spin-1 part turns the two scalar fields into a kind of dark
matter. The electromagnetic vacuum is annihilated by annihilation operators indexed by 1
and 2, but in principle may contain the two types of scalar particles. In this sense what we
call the electromagnetic vacuum may be a state of either positive or negative energy associ-
ated with the scalar particles. The choice of exact vacuum initial condition at τ = 0 seems
natural, but photon statistics would be unchanged even if we started with a non-zero number
of scalar particles.

The internal gauge group U(1) is implicitly present in the ambiguity of flag-plane
πA(k) → eiθ(k)πA(k). As shown in [10] this type of flag ambiguity when applied to massive
fields implies SU(n) gauge groups. So the flag ambiguity is indeed the gauge freedom in the
sense used in particle physics.

15.3 Link of COM Representations to Twistors

Let us consider a twistor (πA,ωA) where ωA = ωA(x,π) = ωA(0) + xAA′
π̄A′ . For massless

particles one finds that πAπ̄A′ = pa is their momentum [13], and we know [9] that the inverse
relation leads to πA = πA(p), up to a flag-plane. A twistor thus depends on momentum pa

and position xa in the characteristic way: πA = πA(p), ωA = ωA(x,p). The new spinor field
�A

BπB(�−1p) has the same flag-pole as πA(p) an thus differs at most by the flag-plane.
Let �A

BπB(�−1p) = eiθπA(p). The inhomogeneous part of the twistor transforms by

xAA′
π̄A′(p) → (�−1x)AA′

(�π)A′(�−1p) = e−iθ xAA′
π̄A′(p) (192)

which is equivalent to (2). It follows that the twistor equation is a particular form of (2).
Twistor is not the most general solution of (2) since one can multiply twistors by any func-
tion of the argument paxa and yet obtain (2). What we in fact have is a twistor equation
constrained by ωAπA = 1. We have not studied the constrained equation in its full general-
ity.

15.4 Weak Cutoff, Weak Law of Large Numbers, Correspondence Principle

The cutoff function does not appear at the level of operators, but enters as a consequence
of evaluating averages in states. The representations of CCR, the Hamiltonian, and the evo-
lution operator are all independent of any cutoff. Instead, in the places where cutoff is typ-
ically inserted by hand we encounter the central element I (κ,N), which may be regarded
as kind of cutoff operator. This is why, following David Finkelstein [19], we speak of “reg-
ularization by quantization”. The link between “cutoff operators” and the true cutoff func-
tion is: 〈0,N |I (k,N)|0,N〉 = 〈0,1|I (k,1)|0,1〉 = Zχ(k),

∫
dR̃〈0,N |I (R,k,N)|0,N〉 =

∫
dR̃〈0,1|I (R,k,1)|0,1〉 = Zχ(k). In irreducible representations we get 〈0|I (k)|0〉 = Z,

a fact that explains how to compare predictions of theories based on N -representations with
those of the irreducible representations of CCR: Take the limit N → ∞ and replace χ(k)

by 1. For N = 1 the central element I (κ,1) is a projector. For N > 1 we have

I (κ,N) = 1

N

(
I (κ,1) ⊗ I ⊗ · · · ⊗ I + · · · + I ⊗ · · · ⊗ I ⊗ I (κ,1)

)
(193)

which means that I (κ,N) is the so-called frequency-of-successes operator know from quan-
tum laws of large numbers [20–23] and whose eigenvalues are s/N , s = 0,1, . . . ,N . This
explains why in the weak limit N → ∞ we effectively obtain Z(κ) in all those places where
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I (κ,N) occurred. It should be stressed that the cutoff χ(k) is an inherent part of the pre-
diction and reflects the physical structure of the Bose-Einstein condensate |0,N〉, playing
the role of vacuum. There is no reason to remove χ(k) from the formulas. This should be
contrasted with the various approaches to the infrared problem one finds in the literature,
where the cutoff has no real physical justification and has to be removed at the end of the
calculation [24–29].

The difference between our type of cutoff and the strong one typically employed in
quantum optical models is similar to that between trace of an operator, and its matrix el-
ement. Indeed, let us consider the Hamiltonian H = ∑∞

n=1 n|n〉〈n|. Its trace is divergent,
TrH = ∑∞

n=1 n, but its matrix element 〈ψ |H |ψ〉 = ∑∞
n=1 n|ψn|2 is finite in an appropriate

domain. But let us note that the average is indistinguishable from the trace of the regular-
ized operator H = ∑∞

n=1 |ψn|2n|n〉〈n|. The latter is an example of “strong” regularization
we know from standard approaches to field quantization, the former is what happens in
N -representations as a consequence of the weak law of large numbers. This is why our
“regularization” cannot be seen in spectra of Hamiltonians.

15.5 Non-Locality versus Causality

The solution of Heisenberg’s equation of motion satisfies also Maxwell’s equations, but with
an operator current that is not identical to the classical current occurring in the Hamiltonian.
The two currents are different in N -representations because of the nontrivial structure of the
central elements. A coherent state average of a solution can be regarded as a classical limit
of the theory. This classical solution satisfies the classical Maxwell equations but, of course,
with appropriately modified current.

Quantum fields quantized in N -representations are not local, in the meaning of this term
employed in axiomatic quantum field theory [30], but it does not mean they are acausal: So-
lutions of the Heisenberg equation satisfy causal Maxwell equations. What we call nonlocal-
ity means here effectively that pointlike charges behave as if they were extended. Our quan-
tum field theory peacefully coexists with causality, but differs from the other approaches to
nonlocal fields one finds in the literature [31–37]. The approach based on N -representations
should not be confused with generalized free fields [38] where the right-hand-sides of CCR
involve Casimir invariants of relativistic symmetries.

Appendix A: Tetrads and Spin-Frames—Notation and Basic Technicalities

Our notation is essentially an appropriately adapted version of the abstract-index conven-
tion of Newman, Penrose, and Rindler [9]. The boldface indices a, A, take numerical values
0, 1, 2, 3, and 0, 1, respectively, and are related to a concrete choice of basis. The ital-
ics a, A are abstract indices and specify types of objects. We work in Minkowski space
of signature (+,−,−,−). The metric tensor is denoted by gab . gab and gab are the matri-
ces diag(+,−,−,−). Minkowski tetrads, indexed by indices that are partly boldfaced and
partly italic, say ga

a , consist of four four-vectors (or four-vector fields) g 0
a , g 1

a , g 2
a , g 3

a . We
will work with three types of tetrads, ga

a, ga
a(k), and ga

a(R,k). The momentum indepen-
dent tetrad g a

a satisfies k0 = |k| = kag 0
a , k1 = kag 1

a , k2 = kag 2
a , k3 = kag 3

a , and defines
decomposition of four-momentum into energy and three-momentum employed, for exam-
ple, in the invariant measure dk̃ = (2π)−3d3k/(2|k|). The four momentum ka = ka(k) can
be written in spinor notation as ka(k) = πA(k)π̄A′

(k), where πA(k) is a spinor field defined
by ka(k) up to a phase factor. For any πA(k) there exists another spinor field ωA(k) satisfy-
ing the spin-frame condition ωA(k)πA(k) = 1. The spin-frame condition does not uniquely
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determine ωA(k) on the basis of πA(k), and the associated freedom is of a gauge type. In-
dices a and a can be raised and lowered by means of the metric tensors gab , gab , gab, gab.
The link between metric tensors and Minkowski tetrads is

gab = g a
a (k)g b

b (k)gab = g a
a (R,k)g b

b (R,k)gab = g a
a g b

b gab, (194)

gab = g a
a (k)g b

b (k)gab = g a
a (R,k)g b

b (R,k)gab = g a
a g b

b gab. (195)

Null tetrads will be indexed by indices that are partly boldface-primed and partly italic: ga
b′

It is important to distinguish between a and a′, and we will employ the convention where
a′ = 00′,01′,10′,11′, with ga′b′ = εABεA′B′ , ga′b′ = εABεA′B′

. We have to raise and lower
indices AA′ by means of εABεA′B′ . The null tetrad associated with spin-frames can be written
as

ga
b′ =

⎛

⎜
⎜
⎝

ga
00′

ga
01′

ga
10′

ga
11′

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

εA
0ε

A′
0′

εA
0ε

A′
1′

εA
1ε

A′
0′

εA
1ε

A′
1′

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

ωAω̄A′

ωAπ̄A′

πAω̄A′

πAπ̄A′

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

ωa

ma

m̄a

ka

⎞

⎟
⎟
⎠ (196)

and dually

ga
b′ =

⎛

⎜
⎜
⎝

g 00′
a

g 01′
a

g 10′
a

g 11′
a

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

ε 0
A ε 0′

A′
ε 0
A ε 1′

A′
ε 1
A ε 0′

A′
ε 1
A ε 1′

A′

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

πAπ̄A′
−πAω̄A′
−ωAπ̄A′
ωAω̄A′

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

ka

−m̄a

−ma

ωa

⎞

⎟
⎟
⎠ . (197)

There is a relation between the Minkowski tetrad, indexed by indices that are partly boldface
and partly italic, and the null tetrad (we skip the arguments k and R, but the formulas are
valid for all the tetrads of interest)

ga
a = gab′gab′ = ga

b′
ga

b′ = ga
BB′

ga
BB′ (198)

⎛

⎜
⎜
⎝

ta

xa

ya

za

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

ga
0

ga
1

ga
2

ga
3

⎞

⎟
⎟
⎠ = 1√

2

⎛

⎜
⎜
⎝

1 0 0 1
0 1 1 0
0 i −i 0
1 0 0 −1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

ωAω̄A′

ωAπ̄A′

πAω̄A′

πAπ̄A′

⎞

⎟
⎟
⎠ = 1√

2

⎛

⎜
⎜
⎝

ωa + ka

ma + m̄a

ima − im̄a

ωa − ka

⎞

⎟
⎟
⎠ (199)

and dually

ga
a = gab′

gab′ = ga
b′ga

b′ = ga
BB′ga

BB′
(200)
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⎛

⎜
⎜
⎝

ta
−xa

−ya

−za

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

g 0
a

g 1
a

g 2
a

g 3
a

⎞

⎟
⎟
⎠ = 1√

2

⎛

⎜
⎜
⎝

1 0 0 1
0 1 1 0
0 −i i 0
1 0 0 −1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

πAπ̄A′
−πAω̄A′
−ωAπ̄A′
ωAω̄A′

⎞

⎟
⎟
⎠

= 1√
2

⎛

⎜
⎜
⎝

ka + ωa

−m̄a − ma

im̄a − ima

ka − ωa

⎞

⎟
⎟
⎠ . (201)

Here the gs with partly boldface and partly boldface-primed indices are the Infeld-van der
Waerden symbols

ga
b′ =

⎛

⎜
⎜
⎝

g0
00′ g0

01′ g0
10′ g0

11′
g1

00′ g1
01′ g1

10′ g1
11′

g2
00′ g2

01′ g2
10′ g2

11′
g3

00′ g3
01′ g3

10′ g3
11′

⎞

⎟
⎟
⎠ = 1√

2

⎛

⎜
⎜
⎝

1 0 0 1
0 1 1 0
0 −i i 0
1 0 0 −1

⎞

⎟
⎟
⎠ , (202)

ga
b′ =

⎛

⎜
⎜
⎝

g0
00′

g0
01′

g0
10′

g0
11′

g1
00′

g1
01′

g1
10′

g1
11′

g2
00′

g2
01′

g2
10′

g2
11′

g3
00′

g3
01′

g3
10′

g3
11′

⎞

⎟
⎟
⎠ = 1√

2

⎛

⎜
⎜
⎝

1 0 0 1
0 1 1 0
0 i −i 0
1 0 0 −1

⎞

⎟
⎟
⎠ . (203)

Let us introduce the SO(1,3) matrices

L b
a (�,k) = ga

a(k)�a
bg b

b (�−1k) = ga
a(k)�g b

a (k), (204)

La
b(�,R,k) = ga

a(R,k)�a
bg b

b (�−1R,�−1k) = ga
a(R,k)�g b

a (R,k), (205)

where �−1k, �−1R are the spacelike parts of the four vectors �−1
a
bkb(k), �−1

a
bRb , re-

spectively, and �g b
a (k) = �a

bg b
b (�−1k), �g b

a (R,k) = �a
bg b

b (�−1R,�−1k).
In order to derive an explicit form of (204) we have to control transformation properties of

the tetrad field. The basic assumption is that the spin-frames are spinor fields, i.e. transform
by

πA(k) → �πA(k) = � B
A πB(�−1k), (206)

ωA(k) → �ωA(k) = � B
A ωB(�−1k), (207)

πA(R,k) → �πA(k) = � B
A πB(�−1R,�−1k), (208)

ωA(R,k) → �ωA(k) = � B
A ωB(�−1R,�−1k). (209)

Here �A
B denotes an unprimed SL(2,C) transformation corresponding to �a

b ∈ SO(1,3).
Since �πA(k)�πA′(k) = πA(k)π̄A′(k) = πA(R,k)π̄A′(R,k) = �πA(R,k)�πA′(R,k) is
satisfied by definition of πA(k) and πA(R,k) one finds

�πA(k) = e−i�(�,k)πA(k), (210)

�πA(R,k) = e−i�(�,k)πA(R,k). (211)

The angle �(�,k) is the spin-1/2, zero-mass Wigner phase known from unitary repre-
sentations of the Poincaré group (purely spinorial proof of this statement can be found in
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[11]), and this is why it does not depend on R. Conservation of the spin-frame condition,
�ωA(k)�πA(k) = ωA(k)πA(k) = 1, implies

�ωA(k) = ei�(�,k)
(
ωA(k) + φ(�,k)πA(k)

)
. (212)

φ(�,k) = |φ(�,k)|eiξ(�,k) is a complex number that depends on the explicit form of ωA(k)

(which is non-unique) and thus is a quantity of a gauge type. Obviously,

ei�(�,k) = πA(k)�ωA(k), (213)

φ(�,k) = e−i�(�,k)ωA(k)�ωA(k). (214)

In terms of this parametrization we find

⎛

⎜
⎜
⎝

�ta(k)

�xa(k)

�ya(k)

�za(k)

⎞

⎟
⎟
⎠ = 1√

2

⎛

⎜
⎜
⎝

1 0 0 1
0 1 1 0
0 i −i 0
1 0 0 −1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

�ωA(k)�ωA′
(k)

�ωA(k)�πA′
(k)

�πA(k)�ωA′
(k)

�πA(k)�πA′
(k)

⎞

⎟
⎟
⎠ (215)

=

⎛

⎜
⎜
⎝

(1 + |φ|2/2)ta + |φ| cos ξxa − |φ| sin ξya − |φ|2/2za

|φ| cos(2� + ξ)ta + cos 2�xa + sin 2�ya − |φ| cos(2� + ξ)za

−|φ| sin(2� + ξ)ta − sin 2�xa + cos 2�ya + |φ| sin(2� + ξ)za

|φ|2/2ta + |φ| cos ξxa − |φ| sin ξya + (1 − |φ|2/2)za

⎞

⎟
⎟
⎠ (216)

and

La
b(�,k) =

⎛

⎜
⎜
⎝

ta(k)�ta(k) −ta(k)�xa(k) −ta(k)�ya(k) −ta(k)�za(k)

xa(k)�ta(k) −xa(k)�xa(k) −xa(k)�ya(k) −xa(k)�za(k)

ya(k)�ta(k) −ya(k)�xa(k) −ya(k)�ya(k) −ya(k)�za(k)

za(k)�ta(k) −za(k)�xa(k) −za(k)�ya(k) −za(k)�za(k)

⎞

⎟
⎟
⎠ (217)

=

⎛

⎜
⎜
⎜
⎝

1 + |φ|2
2 −|φ| cos(ξ + 2�) |φ| sin(ξ + 2�) −|φ|2

2−|φ| cos ξ cos 2� − sin 2� |φ| cos ξ

|φ| sin ξ sin 2� cos 2� −|φ| sin ξ
|φ|2

2 −|φ| cos(ξ + 2�) |φ| sin(ξ + 2�) 1 − |φ|2
2

⎞

⎟
⎟
⎟
⎠

. (218)

Here, of course, � = �(�,k), |φ| = |φ(�,k)|, and ξ = ξ(�,k). Just for completness let
us note that La

b(�,k) corresponds to the SL(2,C) matrix

LA
B(�,k) = ε A

A (k)� B
A ε B

B (�−1k) = ε A
A (k)�ε B

A (k)

=
(

ωA(k)�πA(k) ωA(k)�ωA(k)

0 πA(k)�ωA(k)

)

=
(

e−i�(�,k) −φ(�,k)ei�(�,k)

0 ei�(�,k)

)

. (219)

Now let us consider the spin-frame (101)–(102). We find
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⎛

⎜
⎜
⎝

�ta(R,k)

�xa(R,k)

�ya(R,k)

�za(R,k)

⎞

⎟
⎟
⎠ = 1√

2

⎛

⎜
⎜
⎝

1 0 0 1
0 1 1 0
0 i −i 0
1 0 0 −1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

�ωA(R,k)�ωA′
(R,k)

�ωA(R,k)�πA′
(R,k)

�πA(R,k)�ωA′
(R,k)

�πA(R,k)�πA′
(R,k)

⎞

⎟
⎟
⎠ (220)

=

⎛

⎜
⎜
⎝

ta(R,k)

cos 2�(�,k)xa(R,k) + sin 2�(�,k)ya(R,k)

− sin 2�(�,k)xa(R,k) + cos 2�(�,k)ya(R,k)

za(R,k)

⎞

⎟
⎟
⎠ (221)

and

La
b(�,R,k)

=
⎛

⎜
⎝

ta(R,k)�ta(R,k) −ta(R,k)�xa(R,k) −ta(R,k)�ya(R,k) −ta(R,k)�za(R,k)
xa(R,k)�ta(R,k) −xa(R,k)�xa(R,k) −xa(R,k)�ya(R,k) −xa(R,k)�za(R,k)
ya(R,k)�ta(R,k) −ya(R,k)�xa(R,k) −ya(R,k)�ya(R,k) −ya(R,k)�za(R,k)
za(R,k)�ta(R,k) −za(R,k)�xa(R,k) −za(R,k)�ya(R,k) −za(R,k)�za(R,k)

⎞

⎟
⎠

(222)

=

⎛

⎜
⎜
⎝

1 0 0 0
0 cos 2�(�,k) − sin 2�(�,k) 0
0 sin 2�(�,k) cos 2�(�,k) 0
0 0 0 1

⎞

⎟
⎟
⎠ . (223)

Appendix B: Construction of U(�,0,N)

Consider the following sequence of transformations (repeated indices j , j ′ are summed from
1 to 3):

�a
bAb(�

−1x,1)

= i

∫

dk̃
(
�a

bg
j

b (k)aj (k,1) + �a
bg 0

b (k)a0(k,1)†
)
e−ik·�−1x + H.c. (224)

= i

∫

dk̃|k〉〈k| ⊗ (
�a

bg
j

b (k)aj + �a
bg 0

b (k)a
†
0

)
e−i�k·x + H.c. (225)

= i

∫

dk̃�a
bg 1

b (�−1k)|�−1k〉〈�−1k| ⊗ a1e
−ik·x + · · · (226)

= W(�)

(

i

∫

dk̃�a
bg 1

b (�−1k)|k〉〈k| ⊗ a1e
−ik·x + · · ·

)

W(�)† (227)

= W(�)

(

i

∫

dk̃ga
b(k) gb

b(k)�b
cg 1

c (�−1k)
︸ ︷︷ ︸

Lb
1(�,k)

|k〉〈k| ⊗ a1e
−ik·x + · · ·

)

W(�)† (228)

= W(�)i

∫

dk̃ga
0(k)|k〉〈k| ⊗ (

L0
0(�,k)a

†
0 + L0

j (�,k)aj

)
e−ik·xW(�)†

+ W(�)i

∫

dk̃ga
j (k)|k〉〈k| ⊗ (

Lj
0(�,k)a

†
0 + Lj

j ′
(�,k)aj ′

)
e−ik·xW(�)†

+ H.c. (229)



Int J Theor Phys (2009) 48: 2511–2549 2547

= W(�)i

∫

dk̃ga
0(k)|k〉〈k| ⊗ V (�,k)a

†
0V (�,k)†e−ik·xW(�)†

+ W(�)i

∫

dk̃ga
j (k)|k〉〈k| ⊗ V (�,k)ajV (�,k)†e−ik·xW(�)† + H.c. (230)

= W(�)V (�)Aa(x,1)V (�)†W(�)† (231)

(224)→(225) follows from k · �−1x = �k · x and the form of N = 1 representation of
CCR. (225)→(226) is the change of variables under integral, employing Lorentz invari-
ance of dk̃. In (226)→(227) we introduce the unitary operator W(�)

(|k〉〈k| ⊗ 1
)
W(�)† =

|�−1k〉〈�−1k| ⊗ 1. (227)→(228) uses the Minkowski-tetrad condition ga
b(k)gb

b(k) = ga
b

and defines the matrix (204) which connects two Minkowski tetrads and thus belongs to
SO(1,3). The crucial element of the construction is (229)→(230), where V (�,k) is uni-
tary. To understand why V (�,k) has to exist consider an arbitrary matrix La

b satisfying the
SO(1,3) condition La

cLb
dgcd = gab and define

b
†
0 = L 0

0 a
†
0 + L 1

0 a1 + L 2
0 a2 + L 3

0 a3, (232)

b1 = L 0
1 a

†
0 + L 1

1 a1 + L 2
1 a2 + L 3

1 a3, (233)

b2 = L 0
2 a

†
0 + L 1

2 a1 + L 2
2 a2 + L 3

2 a3, (234)

b3 = L 0
3 a

†
0 + L 1

3 a1 + L 2
3 a2 + L 3

3 a3. (235)

If [aa, a
†
b] = δab1 then [ba, b

†
b] = δab1, as can be checked by explicit calculation employing

gab = diag(+1,−1,−1,−1) (this trick can be generalized to any dimension and any sig-
nature). Now, by a well known theorem there exists a unitary V such that ba = V aaV

†. It
remains to find V (�,k) given Lb

a(�,k). This will be done below.

Appendix C: Explicit Construction of V (�,k)

Consider the generators (78)–(83). Construction of V (�,k) reduces to showing that the
unitary operator

V = exp
(
iα1L1 + iα2L2 + iα3L3

)
(236)

with

α1 = �

sin�
|φ| sin

(
ξ + �

)
, (237)

α2 = �

sin�
|φ| cos

(
ξ + �

)
, (238)

α3 = 2�, (239)

implies
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⎛

⎜
⎜
⎝

V a
†
0V

†

V a1V
†

V a2V
†

V a3V
†

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎜
⎝

1 + |φ|2
2 −|φ| cos(ξ + 2�) |φ| sin(ξ + 2�) −|φ|2

2−|φ| cos ξ cos 2� − sin 2� |φ| cos ξ

|φ| sin ξ sin 2� cos 2� −|φ| sin ξ
|φ|2

2 −|φ| cos(ξ + 2�) |φ| sin(ξ + 2�) 1 − |φ|2
2

⎞

⎟
⎟
⎟
⎠

×

⎛

⎜
⎜
⎝

a
†
0

a1

a2

a3

⎞

⎟
⎟
⎠ . (240)

The calculation is straightforward. Comparison with (218) ends the proof. Further simplifi-
cation is obtained by means of the formulas, valid for (237)–(239),

e−i(α1L1+α2L2+α3L3) = e−i2�L3e−iL1|φ| sin(ξ+2�)e−iL2|φ| cos(ξ+2�) (241)

= e−iL1|φ| sin ξ e−iL2|φ| cos ξ e−i2�L3 . (242)

An analogous reasoning leads to (125). We leave it as an exercise to the readers.
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